SYNTHESIS AND SPECTRAL STUDIES OF NITROSOUREA DERIVATIVES OF BENZYL - 3-METHYL- 5/7 SUBSTITUTED 4H-1, 4-BENZOTHIAZINE -2-CARBOXYLATES AS POSSIBLE BIFUNCTIONAL ANTICANCER AGENTS

Rajni Gupta* and Vandana Gupta

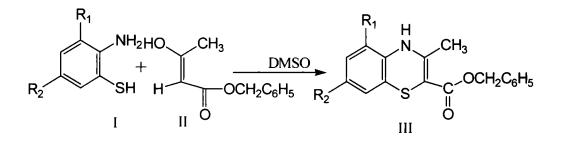
Department of Chemistry, University of Rajasthan, Jaipur-302004, India Email: rajni187@yahoo.co.in

Abstract: The synthesis of nitrosourea derivatives of substituted 4H-1,4-benzothiazines by the isocyanation and successive nitrosation have been reported. The synthesized compounds have been characterized by their elemental analyses and spectral characteristics.

Introduction:

Benzothiazines, analogues of phenothiazines possesss a wide spectrum of biological activities¹. Their several derivatives are in clinical use²⁻⁷. They exhibit significant anticancer activities, which are assigned due to their interaction with DNA by complexation.

Nitrosourea derivatives constitute an important class of anticancer agents and its several derivatives like MNNG, CNU, MNU, GANU, and CDL-7 etc. are clinically significant. They interact with DNA via alkylation ⁸⁻⁹. However their clinical use is limited because of cumulative and delayed side effects exerted by these compounds. Bone marrow toxicity being dose limiting, therefore it is worthwhile to develop a new series of nitrosoureas with minimum toxicity and side effects. 4H-1, 4- Benzothiazines are much less toxic and therefore it is anticipated that their nitrosourea derivatives will be potent anticancer agents with minimum toxicity, side effects etc.

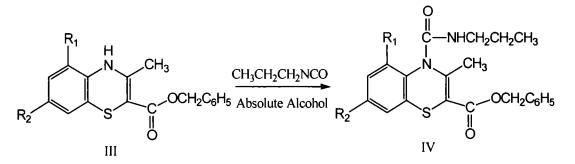

In Benzyl-3-methyl-5/7substituted -4-(N-propyl -N-nitrosoamido)-1,4-benzothiazine-2-carboxylates, heterocyclic nitrogen with a side chain at 4-position constitutes N-nitrosourea linkage and possess both 1,4-benzothiazines nucleus and a nitrosourea moiety. They would show two fold interaction with DNA via complexation¹⁰ as well as alkylation and will constitute bifunctional anticancer agents.

Experimental:

Melting points of the synthesized compounds were determined on an electric melting point apparatus and are uncorrected. IR spectra were recorded in KBr on SHIMADZU 8400S FT IR spectrophotometer. The ¹HNMR and ¹³C NMR spectra were recorded on a model Bruker-DRX-300 NMR spectrometer at 300 MH_Z and 75 MH_Z respectively using CDCl₃ as a solvent and TMS as an internal standard. The Mass spectrum of the representative compound was recorded on JEOL-SX-102/DA-6000 mass spectrometer.

(i)Preparation of benzyl – 3-methyl –5/7 substituted – 4H-1,4-benzothiazine –2caboxylates (III a-g)

To the stirred suspension of benzyl acetoacetate II (10mmoles) in DMSO (5ml) was added 3-methyl/3-ethoxy/5-methyl/5-ethoxy/5-methoxy/5-chloro/3,5-dimethyl-2-amino benzenethiol I (10mmoles) and mixture was refluxed for 30-40mins. The reaction mixture was concentrated and cooled down to room temperature. The solid separated out was filtered, washed with petroleum ether and crystallized from methanol (Scheme-1).

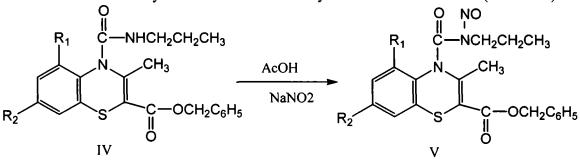


 $R_1 / R_2 = CH_3/H$, OC_2H_5/H , H/CH_3 , H/OC_2H_5 , H/OCH_3 , H/Cl, CH_3/CH_3

Scheme-1

(ii) Preparation of benzyl -3-methyl -5/7 substituted -4-(N-propyl amido) 1,4-benzothiazines-2- carboxylates (IVa-g)

A mixture of benzyl -3-methyl -5/7 substituted -4H-1,4-benzothiazine -2-caboxylates III (10mmoles),10 ml of absolute alcohol and propyl isocyanate (10mmoles) was refluxed on hot plate for 2 hrs. Then the solvent was removed under vacuum rotatory evaporator The product benzyl -3-methyl -5/7 substituted -4-(N-propyl amido)-1,4-benzothiazine-2- carboxylates was crystallised from ethanol (Scheme 2).



 $R_1 / R_2 = CH_3/H$, OC_2H_5/H , H/CH_3 , H/OC_2H_5 , H/OCH_3 , H/Cl, CH_3/CH_3

Scheme -2

(iii) Preparation of benzyl-3-methyl-5/7- substituted-4-(N-propyl-N-nitrosoamido)— 1,4-benzothiazine-2-carboxylate (Va-g)

Benzyl -3-methyl -5/7 substituted -4-(N-propylamido) -1,4-benzothiazines-2carboxylates IV (3mmoles) was dissolved in 50 ml of acetic acid, sodium nitrite (5mmoles) was added portion wise with strirring. The mixture was strirred for 30mins at room temperature and for one hour at 50° C. Acetic acid was evaporated under reduced pressure in vacuum rotatory evaporator. The residue was treated with water. The resulting precipitate of benzyl-3-methyl-5/7- substituted-4- (N-propyl-N-nitrosoamido) -1,4benzothiazine-2-carboxylate was collected and crystallized from methanol.(Scheme 3)

 $R_1 / R_2 = CH_3/H$, OC_2H_5/H , H/CH_3 , H/OC_2H_5 , H/OCH_3 , H/Cl, CH_3/CH_3

Scheme-3

Table 1: Physical data of benzyl-3-methyl-5/7- substituted-4- (N-propyl-N-nitrosoamido)-1,4-benzothiazine-2-carboxylates

Compound	Molecular formula	M.P ℃	Yield %	C (Found) (Calc.)	% H (Found) (Calc.)	N (Found) (Calc.)
Α	C ₂₂ H ₂₃ N ₃ O ₄ S	180	51	(61.86) (62.10)	(5.42) (5.45)	(9.81) (9.88)
В	C ₂₃ H ₂₅ N ₃ O ₅ S	viscous	60	(60.70) (60.64)	(5.55) (5.53)	(9.19) (9.22)
С	C ₂₂ H ₂₃ N ₃ O ₄ S	161	63	(62.90) (62.10)	(5.46) (5.45)	(9.82) (9.88)
D	C ₂₃ H ₂₅ N ₃ O ₅ S	viscous	56	(60.70) (60.64)	(5.50) (5.53)	(9.19) (9.22)
Е	C ₂₂ H ₂₃ N ₃ O ₅ S	viscous	71	(59.78) (59.85)	(5.27) (5.25)	(9.55) (9.52)
F	C ₂₁ H ₂₀ ClN ₃ O ₄ S	172	64	(56.60) (56.56)	(4.51) (4.52)	(9.40) (9.42)
G	C ₂₃ H ₂₅ N ₃ O ₄ S	178	66	(62.90) (62.85)	(5.70) (5.73)	(9.52) (9.56)

Compound	Molecular formula	C=O (cm ⁻¹⁾	C-Cl (cm ⁻¹⁾
A	C ₂₂ H ₂₃ N ₃ O ₄ S	1595, 1650	-
В	C ₂₃ H ₂₅ N ₃ O ₅ S	1605, 1645	-
с	C ₂₂ H ₂₃ N ₃ O ₄ S	1610, 1650	-
D	C ₂₃ H ₂₅ N ₃ O ₅ S	1610, 1655	-
Е	C ₂₂ H ₂₃ N ₃ O ₅ S	1610, 1645	-
F	C ₂₁ H ₂₀ CIN ₃ O ₄ S	1605, 1650	705
G	C ₂₃ H ₂₅ N ₃ O ₄ S	1600, 1635	-

Table 2: Infra red spectral data of benzyl-3-methyl-5/7- substituted-4-(N-propyl-N-nitrosoamido) -1,4-benzothiazine-2-carboxylates

Table 3: NMR Spectral data of benzyl-3-methyl-5/7- substituted-4-(N-propyl-N-nitrosoamido)- -1,4-benzothiazine-2-carboxylates

S.No	Molecular formula	Solvent	δ(ppm)	Hydrogen	Multiplicity	Assignment
A	C ₂₂ H ₂₃ N ₃ O ₄ S	CDCl ₃	6.82-7.19 1.71	8 3	Multiplet	Aromatic protons
			2.35	3	Singlet Singlet	CH ₃ protons at C ₃ CH ₃ protons at C ₅
			0.96-1.2	3' 3	Triplet	
						CH ₃ protons at C' ₃ of propyl group
			1.55-1.62	2	Multiplet	CH ₂ protons at C' ₂
			3.0-3.25	2	Triplet	of propyl group CH ₂ protons at C' ₁
			5.41	2	Singlet	of propyl group CH ₂ protons at Benzyl group
B	C ₂₃ H ₂₅ N ₃ O ₅ S	CDCl ₃	6.53-7.21	8	Multiplet	Aromatic protons
			3.90-4.1	23	Quartet	CH_2 protons of C_2H_5
			1.30-1.4	3	Triplet	CH_3 protons of C_2H_5
			1.73	3	Singlet	CH_3 protons at C' ₃
			3.2-3.61	2	Triplet	CH_2 protons at C' ₁
			1.48-1.52	2	Multiplet	of propyl group H ₂ protons at C' ₂
			0.93-0.98	3	Triplet	of propyl group CH ₃ protons at C' ₃
			5.41	2	Singlet	of propyl group CH ₂ protons of Benzyl group
С	C ₂₂ H ₂₃ N ₃ O ₄ S	CDCl ₃	6.82-7.36	8	Multiplet	Aromatic protons

			-	_		
			1.72	3	Singlet	CH ₃ protons at C ₃
			2.41	3	Singlet	CH ₃ protons at C ₇
			0.91-1.0	3	Triplet	CH ₃ protons at C' ₃
						of propyl group
			1.59-1.7	2	Multiplet	CH ₃ protons at C' ₂
						of propyl group
			3.0-3.2	2	Triplet	CH ₃ protons at C' ₁
						of propyl group
			5.41	2	Singlet	CH ₂ protons of Benzyl group
			6 62 7 27		34-14-1-4	
D	C ₂₃ H ₂₅ N ₃ O ₅ S	CDCI3	6.53-7.37		Multiplet	Aromatic protons
			3.96-4.2	8 2	Quartet	CH_2 protons of C_2H_5
			1.40-1.44	3	Triplet	CH ₃ protons of C_2H_5
			3.0-3.3	3	Singlet	CH ₃ protons at C ₃
			3.0-3.3	2	Triplet	CH ₂ protons at C' ₁
			1.44-1.55	2	Multiplet	of propyl group
			1.44-1.55	2	Multiplet	CH ₂ protons at C' ₂
			0.90-0.96	-	Triplet	of propyl group
			0.70-0.70	3	Implet	CH ₃ protons at C' ₃
			5.41		Singlet	of propyl group
			5.41	2	Singlet	CH ₂ protons of Benzyl group
				-		
E	C ₂₂ H ₂₃ N ₃ O ₅ S	CDCl	6.4-7.27	8	Multiplet	Aromatic protons
	- 22 25- 3 - 3 -		3.73	3	Singlet	CH ₃ protons of OCH3
			1.70	3	Singlet	CH ₃ protons at C ₃
			2.8-3.3	2	Triplet	CH ₂ protons at C' ₁
						of propyl group
			1.54-1.65	2	Multiplet	CH ₂ protons at C' ₂
						of propyl group
			0.90-0.96	3	Triplet	CH ₃ protons at C' ₃
						of propyl group
			5.41	2	Singlet	CH ₂ protons of Benzyl group
						Aromatic protons
F	$\mathbf{C}_{21}\mathbf{H}_{20}\mathbf{CIN_{3}O_{4}S}$	CDCl ₃	7.03-7.42	8	Multiplet	CH_3 protons at C_3
			1.77	3	- Singlet	CH_2 protons at C'_1
			3.7-4.0	2	Triplet	of propyl group
						CH_2 protons at C' ₂
			1.64-1.75	2	Multiplet	of propyl group
			0.01.0.00	2	Trialat	CH ₃ protons at C' ₃
			0.91-0.96	3	Triplet	of propyl group
			5 41	2	Singlet	CH ₂ protons of
			5.41	2	Singlet	Benzyl group
						Den Dyr group
G	C ₂₃ H ₂₅ N ₃ O ₄ S	CDCl ₃	6.53-7.02	8	Multiplet	Aromatic protons
	23112513040		1.70	3	Singlet	CH ₃ protons of C ₃
			2.25	6	Singlet	CH_3 protons at $C_5\&C_7$
			0.96-1.2	3	Triplet	CH ₃ protons at C' ₃
				_		of propyl group
			1.55-1.62	2	Multiplet	CH_2 protons at C' ₂
				-		of propyl group
			3.0-3.25	2	Triplet	CH_2 protons at C' ₁
1						of propyl group
			5.21	2	Singlet	CH ₂ protons of
1					Singlet	Benzyl group
[1	l		1	l peuza group

Results and Discussion:

The synthesis of benzyl-3-methyl-5/7- substituted-4-(N- propyl-N-nitrosoamido)-1,4-benzothiazine-2-carboxylates is based on the synthesis of substituted benzyl – 3methyl –5/7 substituted – 4H-1,4-benzothiazine –2-caboxylates reported elsewhere¹. 4H-1,4-Benzothiazines are analogs of phenothiazines and like phenothiazines they bear a fold along nitrogen and sulphur axis which is considered responsible to impart them biological activities. So it was considered worthwhile to incorporate the activities of benzothiazines and nitrosoureas into one molecule i.e nitrosourea derivatives of benzyl-3-methyl- 5/7 substituted -1,4- benzothiazine-2- carboxylates .4H-1,4-benzothiazines are key compounds to synthesize the above mentioned compounds. Here the 4H-1,4benzothiazines were allowed to undergo isocyanation at 4-position, thereby giving benzyl –3-methyl –5/7 substituted –4-(N-Propyl amido) -1,4-benzothiazines-2- carboxylates. These were then let to undergo nitrosation with sodium nitrite in acetic acid.

References:

- 1. R R Gupta(Ed.) "Phenothiazines and 4H-1,4-Benzothiazines Chemical and Biomedical Aspects" Elsevier, Amsterdam, 1988.
- 2. H. Keyzer, G. M. Eckert, I. S. forrest, R. R. Gupta, F. Gutmann, J. Molnar (Eds.) "Thiazines and Structurally related compounds" (Proceedings of Sixth International Conference on Phenothiazines and Structurallyrelated Psychotropic compounds, Pasadena, California, Sep.11-14(1990). Krieger Publishing Company, Malabar, Florida, USA(1992).
- 3. H.Y.Kogyo, Japanese patent, 59, 187,170(1984); Chem. Abstr., 102, 45965(1985).
- 4. Kalpana Gupta, VandanaGupta, Rajni gupta, and M. Kumar, Hetercycl.Commun., 8 (5) 485-458(2002).
- 5. R R Gupta, M L Sharma, C M Rajoria, Archana Gupta, and M Nyati, Anticancer Drugs, 4, 589(1993).
- 6. Gulshan Kumar, Vandana Gupta, D C Gautam and R R Gupta, Heterocycl.Commun.,8(5) 381-384(2002).
- 7. M. Myehlstaedt, R Widera, H. Meinhold and K. Hollmann, German(East)Patent 214,128(1984); Chem Abstr.,102 203979(1985).
- 8. J. A. Montgomery and T.P.Johnston," Nitrosoureas" in D.E.V Wilman(Ed.) Chemistry of Anticancer agents,"Blakie ,Glassgow and London, 199, pp.131-158 and cited reference therein.
- 9. Mukesh Kumar Nyati, Dinesh Rai, Radha Raman Gupta and Prashant Kumar Dev. In Vivo II: 95-100(1997).
- C. Bodea and I. Silberg" Recent advances in the Chemistry of Phenothiazines" in A. R Katrikzky and A J Boulton (Eds.)" Advances in Heterocyclic Chemistry" Vol 9, Academic Press, New York and London(1968), pp392.

Received on 16 February, 2009.